Saturday, 9 December 2017

التنبؤ مع الحركة من المتوسط - مثال


أور-نوتس عبارة عن سلسلة من الملاحظات التمهيدية حول الموضوعات التي تقع تحت عنوان واسع من مجال بحوث العمليات (أور). كانوا يستخدمون أصلا من قبل لي في تمهيدية أو بالطبع أعطي في كلية إمبريال. وهي متاحة الآن للاستخدام من قبل أي طالب والمعلمين المهتمين في أو تخضع للشروط التالية. يمكن العثور على قائمة كاملة بالموضوعات المتوفرة في أور-نوتس هنا. أمثلة للتنبؤ التنبؤ مثال عام 1996 امتحان أوغ ويظهر الطلب على منتج في كل من الأشهر الخمسة الماضية أدناه. استخدام المتوسط ​​المتحرك لمدة شهرين لتوليد توقعات للطلب في الشهر 6. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 لتوليد توقعات للطلب على الطلب في الشهر 6. أي من هذين التنبؤين تفضل ولماذا تتحرك الشهرين متوسط ​​لشهرين إلى خمسة تعطى من قبل: التوقعات للشهر السادس هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك للشهر 5 م 5 2350. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 نحصل على: كما كان من قبل فإن توقعات الشهر السادس هي مجرد المتوسط ​​للشهر 5 M 5 2386 لمقارنة التوقعين نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك مسد (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 وبالنسبة للمتوسط ​​الملمس أضعافا مع ثابت التمهيد 0.9 مسد (13-17) sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 وبشكل عام نرى أن التمهيد الأسي يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 2386 التي تم إنتاجها من قبل التمهيد الأسي. التنبؤ مثال 1994 امتحان أوغ ويبين الجدول أدناه الطلب على ما بعد البيع الجديد في متجر لكل من الأشهر ال 7 الماضية. احسب المتوسط ​​المتحرك لمدة شهرين لمدة شهرين إلى سبعة. ماذا سيكون توقعاتك للطلب في الشهر الثامن تطبيق التمهيد الأسي مع ثابت التمهيد من 0.1 لاستخلاص توقعات للطلب في الشهر الثامن. أي من التنبؤين في الشهر الثامن تفضلون ولماذا يعتقد حارس متجر أن العملاء يتحولون إلى هذا الجديد بعد البيع من العلامات التجارية الأخرى. ناقش كيف يمكنك نموذج سلوك التحويل هذا وبيان البيانات التي ستحتاجها لتأكيد ما إذا كان هذا التحويل يحدث أم لا. ويعطى المتوسط ​​المتحرك لشهرين إلى سبعة أشهر من قبل: التوقعات لشهر الثامن هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك لشهر 7 م 7 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.1 نحن الحصول على: كما هو الحال قبل توقعات الشهر الثامن هو مجرد المتوسط ​​للشهر 7 M 7 31.11 31 (كما أننا لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​السلس المتوسط ​​مع ثابت التمهيد 0.1 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لشهرين يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة شهرين. لفحص التحول سنحتاج إلى استخدام نموذج عملية ماركوف، حيث الدول العلامات التجارية، ونحن بحاجة إلى معلومات الحالة الأولية واحتمالات التحول العملاء (من الدراسات الاستقصائية). نحن بحاجة إلى تشغيل النموذج على البيانات التاريخية لمعرفة ما إذا كان لدينا تناسب بين النموذج والسلوك التاريخي. التنبؤ مثال 1992 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من الحلاقة في متجر لكل من الأشهر التسعة الماضية. احسب المتوسط ​​المتحرك لمدة ثلاثة أشهر للأشهر من 3 إلى 9. ما هي توقعاتك للطلب في الشهر العاشر تطبيق التجانس الأسي مع ثابت التمهيد 0.3 لاستخلاص توقعات للطلب في الشهر العاشر. أي من التنبؤين للشهر العشر تفضلون ولماذا يعطى المتوسط ​​المتحرك لمدة ثلاثة أشهر للأشهر 3 إلى 9 من خلال: التوقعات لشهر 10 هي مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك لشهر 9 م 9 20-33. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات الشهر 10 هو 20. تطبيق التمهيد الأسي مع ثابت تمهيد من 0.3 نحصل على: كما كان قبل توقعات لشهر 10 هو مجرد متوسط ​​للشهر 9 M 9 18.57 19 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​المتحرك الأسي مع ثابت التمهيد 0.3 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لمدة ثلاثة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 20 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة ثلاثة أشهر. التنبؤ مثال 1991 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من جهاز الفاكس في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط ​​المتحرك لمدة أربعة أشهر للأشهر من 4 إلى 12. ما هي توقعاتك للطلب في الشهر 13 تطبيق التمهيد الأسي مع ثابت التمهيد 0.2 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات في الشهر 13 هل تفضل ولماذا العوامل الأخرى التي لا تؤخذ في الاعتبار في الحسابات أعلاه قد تؤثر على الطلب على جهاز الفاكس في الشهر 13 ويعطى المتوسط ​​المتحرك لمدة أربعة أشهر للأشهر 4 إلى 12 بواسطة: m 4 (23 19 15 12) 4 17،25 م 5 (27 23 19 15) 4 21 م 6 (30 27 23 19) 4 24،75 م 7 (32 30 27 23) 4 28 م 8 (33 32 30 27) 4 30،5 م 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 التوقعات لشهر 13 هي فقط المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك في الشهر 12 م 12 46.25. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.2 نحصل على: كما هو الحال قبل توقعات لشهر 13 هو مجرد المتوسط ​​للشهر 12 M 12 38.618 39 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط ​​المتحرك والمتوسط ​​المتحرك الأسي مع ثابت التمهيد 0.2 بشكل عام فإننا نرى أن المتوسط ​​المتحرك لمدة أربعة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة أربعة أشهر. التغيرات الموسمية الطلب على الأسعار الإعلان، على حد سواء هذه العلامة التجارية وغيرها من العلامات التجارية الوضع الاقتصادي العام التكنولوجيا الجديدة مثال على التنبؤ 1989 امتحان أوغ ويبين الجدول أدناه الطلب على ماركة معينة من فرن الميكروويف في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط ​​المتحرك لمدة ستة أشهر لكل شهر. ماذا سيكون توقعاتك للطلب في الشهر 13 تطبيق تمهيد الأسي مع ثابت تجانس 0.7 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات لشهر 13 هل تفضل ولماذا الآن لا يمكننا حساب ستة حتى نحصل على 6 ملاحظات على الأقل - أي أننا لا نستطيع حساب هذا المتوسط ​​إلا من الشهر 6 فصاعدا. ومن هنا يكون لدينا: m 6 (34 32 30 29 31 27) 6 30.50 م 7 (36 34 32 30 29 31) 6 32.00 م 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34.00 m 10 (39 37 35 36 34 32) 6 35.50 m 11 (40 39 37 35 36 34) 6 36.83 m 12 (42 40 39 37 35 36) 6 38.17 إن توقعات الشهر 13 هي فقط المتوسط ​​المتحرك ل شهر قبل ذلك أي المتوسط ​​المتحرك لشهر 12 م 12 38.17. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) التوقعات لشهر 13 هو 38. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.7 نحصل على: A التنبؤ حساب أمثلة A.1 أساليب حساب التنبؤ تتوفر اثني عشر طرق لحساب التوقعات. معظم هذه الأساليب توفر مراقبة محدودة للمستخدم. على سبيل المثال، قد يتم تحديد الوزن الذي تم وضعه على البيانات التاريخية الحديثة أو النطاق الزمني للبيانات التاريخية المستخدمة في الحسابات. وتظهر الأمثلة التالية طريقة الحساب لكل طريقة من أساليب التنبؤ المتاحة، بالنظر إلى مجموعة متطابقة من البيانات التاريخية. وتستخدم الأمثلة التالية نفس بيانات المبيعات لعامي 2004 و 2005 لإنتاج توقعات مبيعات عام 2006. بالإضافة إلى حساب التنبؤات، يتضمن كل مثال توقعات عام 2005 المحاكية لفترة استبقاء مدتها ثلاثة أشهر (خيار المعالجة 19 3) والتي تستخدم بعد ذلك لنسبة الدقة ومتوسط ​​حسابات الانحراف المطلق (المبيعات الفعلية مقارنة بالتوقعات المحاكية). 2.A معايير تقييم الأداء المتوقعة اعتمادا على اختيارك لخيارات المعالجة وعلى الاتجاهات والأنماط الموجودة في بيانات المبيعات، فإن بعض أساليب التنبؤ ستؤدي أداء أفضل من غيرها بالنسبة لمجموعة بيانات تاريخية معينة. قد لا تكون طريقة التنبؤ المناسبة لمنتج واحد مناسبة لمنتج آخر. ومن غير المرجح أيضا أن تظل طريقة التنبؤ التي توفر نتائج جيدة في مرحلة واحدة من دورة حياة المنتجات ملائمة طوال دورة الحياة بأكملها. يمكنك الاختيار بين طريقتين لتقييم الأداء الحالي لطرق التنبؤ. وهي تعني الانحراف المطلق (ماد) ونسبة الدقة (بوا). يتطلب كل من أساليب تقييم الأداء هذه بيانات مبيعات تاريخية لمستخدم محدد الفترة الزمنية. وتسمى هذه الفترة من الزمن فترة الاستيعاب أو الفترات المناسبة (بف). وتستخدم البيانات في هذه الفترة كأساس لتوصية أي من أساليب التنبؤ التي ستستخدم في وضع توقعات التوقعات التالية. هذه التوصية خاصة بكل منتج، وقد تتغير من جيل واحد إلى آخر. وتظهر طرائق تقييم أداء التنبؤات في الصفحات التالية لأمثلة أساليب التنبؤ الإثني عشر. A.3 الطريقة 1 - النسبة المئوية المحددة خلال العام الماضي تضاعف هذه الطريقة بيانات المبيعات عن السنة السابقة بواسطة عامل محدد للمستخدم على سبيل المثال، 1.10 لزيادة 10، أو 0.97 ل 3 انخفاض. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى العدد المحدد من الفترات الزمنية لتقييم أداء التنبؤ (خيار المعالجة 19). A.4.1 نطاق حساب التنبؤات من تاريخ المبيعات لاستخدامها في حساب عامل النمو (خيار المعالجة 2 أ) 3 في هذا المثال. مجموع الأشهر الثلاثة الأخيرة من عام 2005: 114 119 137 370 مجموع نفس الأشهر الثلاثة من العام السابق: 123 139 133 395 العامل المحسوب 370395 0.9367 حساب التوقعات: يناير 2005 المبيعات 128 0.9367 119.8036 أو حوالي 120 فبراير 2005 المبيعات 117 0.9367 109.5939 أو حوالي 110 مارس 2005 المبيعات 115 0.9367 107.7205 أو حوالي 108 A.4.2 حساب التوقعات المحسوبة بلغ ثلاثة أشهر من عام 2005 قبل فترة الاستحواذ (يوليو وأغسطس وسبتمبر): 129 140 131 400 اجمالي نفس الأشهر الثلاثة السنة السابقة: 141 128 118 387 المحسوب عامل 400387 1.033591731 حساب توقعات المحاكاة: أكتوبر 2004 المبيعات 123 1.033591731 127.13178 نوفمبر 2004 المبيعات 139 1.033591731 143.66925 ديسمبر 2004 المبيعات 133 1.033591731 137.4677 A.4.3 النسبة المئوية لحساب دقة الحساب (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 حساب الانحراف المطلق (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 الطريقة الثالثة - السنة الماضية لهذا العام تقوم هذه الطريقة بنسخ بيانات المبيعات من السنة السابقة إلى السنة التالية. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المحددة لتقييم أداء التنبؤ (خيار المعالجة 19). A.6.1 حساب التنبؤ عدد الفترات التي يتعين إدراجها في المتوسط ​​(خيار المعالجة 4 أ) 3 في هذا المثال بالنسبة لكل شهر من التوقعات، متوسط ​​بيانات الأشهر الثلاثة السابقة. توقعات كانون الثاني / يناير: 114 119 137 370، 370 3 123.333 أو 123 توقعات شباط / فبراير: 119 137 123 379، 379 3 126.333 أو توقعات 126 آذار / مارس: 137 123 126 379، 386 3 128.667 أو 129 ألف -6-2 حساب التوقعات المحاكاة مبيعات تشرين الأول / أكتوبر 2005 (129 140 131) 3 133.3333 تشرين الثاني / نوفمبر 2005 المبيعات (140 131 114) 3 128.3333 كانون الأول / ديسمبر 2005 المبيعات (131 114 119) 3 121.3333 ألف -6.3 النسبة المئوية لحساب حساب الدقة (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 ألف -6.4 المتوسط ​​المطلق حساب الانحراف (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 الطريقة 5 - التقريب الخطي يحسب التقريب الخطي اتجاها يستند إلى نقطتي بيانات تاريخ المبيعات. وتحدد هاتان النقطتان خط اتجاه مستقيمي متوقع في المستقبل. استخدم هذه الطريقة بحذر، حيث أن التوقعات طويلة المدى تستفيد من التغييرات الصغيرة في نقطتي بيانات فقط. تاريخ المبيعات المطلوب: عدد الفترات التي يجب تضمينها في الانحدار (خيار المعالجة 5 أ)، بالإضافة إلى 1 عدد الفترات الزمنية لتقييم أداء التنبؤ (خيار المعالجة 19). A.8.1 حساب التنبؤ عدد الفترات التي يجب تضمينها في الانحدار (خيار المعالجة 6 أ) 3 في هذا المثال بالنسبة لكل شهر من التوقعات، أضف الزيادة أو النقصان خلال الفترات المحددة قبل فترة الاستبقاء في الفترة السابقة. متوسط ​​األشهر الثالثة السابقة) 114 119 137 (3 123.3333 ملخص األشهر الثالثة السابقة مع األخذ في االعتبار) 114 1 () 119 2 () 137 3 (763 الفرق بين القيم 763 - 123.3333) 1 2 3 (23 النسبة) 12 22 32) - 2 3 14 - 12 2 القيمة 1 الفرق الفارق 232 11.5 القيمة 2 المتوسط ​​- القيمة 1 123.3333 - 11.5 2 100.3333 التوقعات (1) القيمة 1 القيمة 2 4 11.5 100.3333 146.333 أو 146 التوقعات 5 11.5 100.3333 157.8333 أو 158 التوقعات 6 11.5 100.3333 169.3333 أو 169 A.8.2 حساب التوقعات المحاكية مبيعات أكتوبر / تشرين الأول 2004: متوسط ​​الأشهر الثلاثة السابقة (129 140 131) 3 133.3333 ملخص الأشهر الثلاثة السابقة مع اعتبار الوزن (129 1) (140 2) (131 3) 802 الفرق بين (1 2 3) 2 نسبة (12 22 32) - 2 3 14 - 12 2 القيمة 1 الفرق 22 22 1 القيمة 2 المتوسط ​​- القيمة 1 133.3333 - 1 2 131.3333 التوقعات (1) القيمة 1 القيمة 2 4 1 131.3333 135.3333 نوفمبر 2004 مبيعات متوسط ​​األشهر الثالثة السابقة) 140 131 114 (3 128.3333 ملخص األشهر الثالثة السابقة مع اعتبار الوزن) 140 1 () 131 2 () 114 3 (744 الفرق بين القيم 744 - 128.3333) 1 2 3 (-25.9999 القيمة 1) الفرق - الفوائد -25.99992 -12.9999 القيمة 2 المتوسط ​​- القيمة 1 128.3333 - (-12.9999) 2 154.3333 التوقعات 4 -12.9999 154.3333 102.3333 ديسمبر 2004 المبيعات متوسط ​​الأشهر الثلاثة السابقة (131 114 119) 3 121.3333 ملخص الأشهر الثلاثة السابقة مع اعتبار الوزن ( 131 1) (114 2) (119 3) 716 الفرق بين القيم 716 - 121.3333 (1 2 3) -11.9999 القيمة 1 الفرق الفارق -11.99992 -5.9999 القيمة 2 متوسط ​​- القيمة 1 121.3333 - (-5.9999) 2 133.3333 توقعات 4 (-5.9999 ) 133.3333 109.3333 A.8.3 النسبة المئوية لحساب تكلفة الشراء (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 حساب الانحراف المطلق (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 الطريقة 7 - الشركة السعودية d درجة التقريب يحدد الانحدار الخطي القيمتين a و b في صيغة التنبؤ Y a بكس بهدف تركيب خط مستقيم على بيانات تاريخ المبيعات. الدرجة الثانية تقريب مماثل. ومع ذلك، تحدد هذه الطريقة قيم a و b و c في صيغة التنبؤ Y بكس cX2 بهدف تركيب منحنى على بيانات سجل المبيعات. قد تكون هذه الطريقة مفيدة عندما يكون المنتج في مرحلة الانتقال بين مراحل دورة حياة. على سبيل المثال، عندما يتحرك منتج جديد من مرحلة مقدمة إلى مراحل النمو، قد يتسارع اتجاه المبيعات. بسبب مصطلح الترتيب الثاني، يمكن التنبؤ بسرعة الاقتراب اللانهاية أو انخفاض إلى الصفر (اعتمادا على ما إذا كان معامل ج إيجابي أو سلبي). ولذلك، فإن هذه الطريقة مفيدة فقط على المدى القصير. مواصفات التوقعات: الصيغ تجد a، b، c لتتناسب مع منحنى إلى ثلاث نقاط بالضبط. يمكنك تحديد n في خيار المعالجة 7a، وعدد الفترات الزمنية للبيانات لتتراكم في كل من النقاط الثلاث. في هذا المثال n 3. لذلك، يتم دمج بيانات المبيعات الفعلية للفترة من أبريل إلى يونيو في النقطة الأولى، Q1. يوليو إلى سبتمبر تضاف معا لخلق Q2، وأكتوبر خلال ديسمبر المبلغ إلى Q3. سيتم تركيب المنحنى على القيم الثلاثة Q1 و Q2 و Q3. تاريخ المبيعات المطلوب: 3 n فترات لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). عدد الفترات المراد تضمينها (الخيار 7 أ) 3 في هذا المثال استخدم الأشهر السابقة (3 n) في فدرات ثلاثة أشهر: Q1 (أبريل - يونيو) 125 122 137 384 Q2 (يوليو - سبتمبر) 129 140 131 400 Q3 ( أوكت - ديك) 114 119 137 370 تتضمن الخطوة التالية حساب المعاملات الثلاثة a و b و c التي سيتم استخدامها في صيغة التنبؤ Y بكس cX2 (1) Q1 a بكس cX2 (حيث X 1) أبك (2) Q2 (x 2) ب 2 c 3 (2) 4 ب 4 (3) Q3 بكس c2 (3) 3b 9c حل المعادلات الثلاث في وقت واحد لإيجاد b و a و c: طرح المعادلة (1) من المعادلة (2) (2) - (1) Q2 - Q1 b 3c استبدال هذه المعادلة ل b في المعادلة (3) (3) Q3 a 3 (Q2 - Q1) - 3c c وأخيرا، استبدل هذه المعادلات ل a و b إلى المعادلة (1) Q3 - 3 (Q2 - Q1) (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) 2 طريقة تقريب الدرجة الثانية تحسب a و b و c على النحو التالي: Q3 - 3 (الربع الثاني - الربع الأول) 370 - 3 (400 - 384) 322 ج (الربع الثالث - الربع الثاني) 2 (370 - 400) (384 - 400) 2 -23 ب (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a بكس cX2 322 85X (-23) X2 كانون الثاني (يناير) توقعات مارس (X4): (322 340 - 368) 3 2943 98 (322 425 - 575) 3 57.333 أو 57 في الفترة من تموز / يوليه إلى أيلول / سبتمبر (X6): (322 510 - 828) 3 1.33 أو 1 في الفترة من تشرين الأول / أكتوبر إلى كانون الأول / ديسمبر (X7) (322) 595 - 11273 -70 A.9.2 حساب التوقعات المحاكاة مبيعات شهر أكتوبر ونوفمبر وديسمبر 2004: الربع الأول (يناير - مارس) 360 Q2 (أبريل - يونيو) 384 الربع الثالث (يوليو - سبتمبر) 400 400 - 3 (384 - 360) 328 ج (400 - 384) (360 - 384) 2 -4 ب (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 ألف - 9 - 3 النسبة المئوية لحساب حساب الدقة (136 136 136) (114 119 137) 100 110.27 A.9.4 حساب الانحراف المطلق المتوسط ​​(136 - 114 136 - 119 136 - 137) 3 13.33 ألف - 10 الطريقة 8 - الطريقة المرنة إن الطريقة المرنة (النسبة المئوية خلال الأشهر السابقة) مماثلة للطريقة 1، النسبة المئوية عن العام الماضي. كلتا الطريقتين تضاعف بيانات المبيعات من فترة زمنية سابقة من قبل المستخدم المحدد عامل، ثم مشروع تلك النتيجة في المستقبل. في طريقة النسبة المئوية خلال العام الماضي، يستند الإسقاط إلى بيانات من نفس الفترة الزمنية في العام السابق. ويضيف الأسلوب المرن القدرة على تحديد فترة زمنية غير الفترة نفسها من العام الماضي لاستخدامها كأساس للحسابات. عامل الضرب. على سبيل المثال، حدد 1.15 في خيار المعالجة 8b لزيادة بيانات سجل المبيعات السابقة بمقدار 15. فترة الأساس. على سبيل المثال، سيؤدي n 3 إلى أن تستند التوقعات الأولى إلى بيانات المبيعات في أكتوبر / تشرين الأول 2005. الحد الأدنى من تاريخ المبيعات: يحدد المستخدم عدد الفترات التي تعود إلى فترة الأساس، بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات ( PBF). A.10.4 متوسط ​​حساب الانحراف المطلق درهم (148 - 114 161 - 119 151 - 137) 3 30 A.11 الطريقة 9 - المتوسط ​​المتحرك المتوسط ​​يشبه أسلوب المتوسط ​​المتحرك المتوسط ​​(ويم) الطريقة 4، المتوسط ​​المتحرك (ما). ومع ذلك، مع المتوسط ​​المتحرك المرجح يمكنك تعيين الأوزان غير المتساوية إلى البيانات التاريخية. وتحسب الطريقة المتوسط ​​المرجح لتاريخ المبيعات الأخير للوصول إلى إسقاط على المدى القصير. عادة ما يتم تعيين بيانات أكثر حداثة وزنا أكبر من البيانات القديمة، لذلك هذا يجعل وما أكثر استجابة للتحولات في مستوى المبيعات. ومع ذلك، لا يزال التحيز التنبؤي والأخطاء المنهجية تحدث عندما يظهر تاريخ مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة بدلا من المنتجات في مراحل النمو أو التقادم من دورة الحياة. n عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 3 في خيار المعالجة 9a لاستخدام أحدث ثلاث فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. فإنه يؤدي إلى توقعات مستقرة، ولكن سيكون بطيئا في التعرف على التحولات في مستوى المبيعات. من ناحية أخرى، قيمة صغيرة ل n (مثل 3) سوف تستجيب أسرع للتحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث أن الإنتاج لا يمكن أن تستجيب لهذه الاختلافات. الوزن المخصص لكل فترة من فترات البيانات التاريخية. يجب أن يبلغ إجمالي الأوزان المخصصة 1.00. على سبيل المثال، عندما n 3، تعيين أوزان 0،6 و 0،3 و 0،1، مع أحدث البيانات تلقي أكبر وزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 الطريقة 10 - التمهيد الخطي تشبه هذه الطريقة الطريقة 9، المتوسط ​​المتحرك المرجح (وما). ومع ذلك، بدلا من تعيين تعسفي للأوزان للبيانات التاريخية، يتم استخدام صيغة لتعيين الأوزان التي تنخفض خطيا ويجمع إلى 1.00. ثم تحسب الطريقة المتوسط ​​المرجح لتاريخ المبيعات الأخير للتوصل إلى إسقاط على المدى القصير. وكما هو الحال بالنسبة لجميع تقنيات التنبؤ المتوسط ​​المتحرك الخطي، يحدث التحيز المتوقع والأخطاء المنهجية عندما يظهر سجل مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة بدلا من المنتجات في مراحل النمو أو التقادم من دورة الحياة. n عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. وهذا محدد في خيار المعالجة 10 أ. على سبيل المثال، حدد n 3 في خيار المعالجة 10b لاستخدام أحدث ثلاث فترات كأساس للتوقعات في الفترة الزمنية التالية. سيقوم النظام تلقائيا بتعيين الأوزان إلى البيانات التاريخية التي تنخفض خطيا ويجمع إلى 1.00. على سبيل المثال، عندما n 3، سيقوم النظام بتعيين أوزان 0.5، 0.3333، 0.1، مع أحدث البيانات التي تتلقى أكبر وزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). A.12.1 حساب التنبؤ عدد الفترات التي يجب تضمينها في متوسط ​​التمهيد (خيار المعالجة 10 أ) 3 في هذا المثال النسبة لفترة واحدة قبل 3 (n2 n) 2 3 (32 3) 2 36 0.5 نسبة لفترتين قبل 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. نسبة ثلاث فترات قبل 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. توقعات يناير: 137 0.5 119 13 114 16 127.16 أو 127 توقعات فبراير: 127 0.5 137 13 119 16 129 توقعات آذار / مارس: 129 0.5 127 13 137 16 129.666 أو 130 ألف-12-2 حساب التوقعات المحاكاة مبيعات تشرين الأول / أكتوبر 2004 129 16 140 26 131 36 133.6666 تشرين الثاني / نوفمبر 2004 المبيعات 140 16 131 26 114 36 124 كانون الأول / ديسمبر 2004 المبيعات 131 16 114 26 119 36 119.3333 A.12.3 النسبة المئوية لحساب حساب الدقة (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 متوسط ​​حساب الانحراف المطلق (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 الطريقة 11 - التجانس الأسي تشبه هذه الطريقة الطريقة 10، التنعيم الخطي. في الخطي تمهيد النظام يعين الأوزان إلى البيانات التاريخية التي تنخفض خطيا. في التجانس الأسي، يعين النظام الأوزان التي تسوس أضعافا مضاعفة. معادلة التنبؤ بالتمهيد الأسي هي: التوقعات (المبيعات الفعلية السابقة) (1 - a) التوقعات السابقة التوقعات هي المتوسط ​​المرجح للمبيعات الفعلية من الفترة السابقة والتوقعات من الفترة السابقة. a هو الوزن المطبق على المبيعات الفعلية للفترة السابقة. (1-a) هو الوزن المطبق على توقعات الفترة السابقة. القيم الصالحة لنطاق من 0 إلى 1، وعادة ما تقع بين 0.1 و 0.4. مجموع الأوزان هو 1.00. a (1 - a) 1 يجب أن تعين قيمة ثابت التمهيد، a. إذا لم تقم بتعيين قيم ثابتة التجانس، يقوم النظام بحساب قيمة مفترضة استنادا إلى عدد فترات سجل المبيعات المحددة في خيار المعالجة 11a. وهو ثابت التمهيد المستخدم في حساب المتوسط ​​الميسر للمستوى العام أو حجم المبيعات. القيم الصالحة لنطاق من 0 إلى 1. n نطاق بيانات سجل المبيعات لتضمينها في الحسابات. عموما سنة واحدة من بيانات تاريخ المبيعات غير كافية لتقدير المستوى العام للمبيعات. على سبيل المثال، تم اختيار قيمة صغيرة ل n (n 3) من أجل تقليل الحسابات اليدوية المطلوبة للتحقق من النتائج. ويمكن أن يؤدي التمهيد الأسي إلى توليد توقعات تستند إلى أقل من نقطة بيانات تاريخية واحدة. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). ألف - 13 - 1 حساب التنبؤ عدد الفترات المراد إدراجها في متوسط ​​التمهيد (الخيار 11 أ) 3 و عامل ألفا (خيار المعالجة 11 ب) فارغا في هذا المثال عاملا لأقدم بيانات المبيعات 2 (11) أو 1 عند تحديد ألفا (12) أو ألفا عندما يتم تحديد ألفا عاملا ل 3 أقدم بيانات المبيعات 2 (13) أو ألفا عندما يتم تحديد ألفا عاملا لأحدث بيانات المبيعات 2 (1n) ، أو ألفا عندما يتم تحديد ألفا نوفمبر سم. متوسط أ (أكتوبر الفعلي) (1 - أ) أكتوبر سم. متوسط 1 114 0 0 114 ديسمبر سم. متوسط أ (نوفمبر الفعلي) (1 - أ) نوفمبر سم. متوسط 23 119 13 114 117.3333 كانون الثاني / يناير التوقعات (كانون الأول / ديسمبر الفعلي) (1 - أ) كانون الأول / ديسمبر سم. متوسط 24 137 24 117.3333 127.16665 أو 127 توقعات شباط / فبراير توقعات كانون الثاني / يناير 127 توقعات آذار / مارس توقعات كانون الثاني / يناير 127 ألف-13-2 حساب التوقعات المحاكاة تموز / يوليه 2004. متوسط 22 129 129 أوغست سم. متوسط 23 140 13 129 136.3333 سيبتمبر سم. متوسط 24 131 24 136.3333 133.6666 أكتوبر، 2004 مبيعات سيب سم. متوسط 133.6666 أوغست، 2004 سم. متوسط 22 140 140 سيبتمبر سم. متوسط 23 131 13 140 134 أكتوبر سم. متوسط 24 114 24 134 124 نوفمبر، 2004 المبيعات سيب سم. متوسط 124 سبتمبر 2004 سم. متوسط 22 131 131 أكتوبر سم. متوسط 23 114 13 131 119.6666 نوفمبر سم. متوسط 24 119 24 119.6666 119.3333 ديسمبر 2004 مبيعات سيب سم. متوسط 119.3333 A.13.3 النسبة المئوية لحساب حساب الدقة (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 متوسط ​​حساب الانحراف المطلق (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 الطريقة 12 - التماسك الأسي مع الاتجاه والموسمية هذا الأسلوب مشابه لطريقة 11، الأسي تمهيد في أن يتم حساب متوسط ​​سلسة. ومع ذلك، تتضمن الطريقة 12 أيضا مصطلحا في معادلة التنبؤ لحساب اتجاه سلس. وتتكون التنبؤات من سلسة متوسطة تم تعديلها لاتجاه خطي. عندما يتم تحديده في خيار المعالجة، يتم تعديل التوقعات أيضا للموسمية. وهو ثابت التمهيد المستخدم في حساب المتوسط ​​الميسر للمستوى العام أو حجم المبيعات. القيم الصالحة لمدى ألفا تتراوح بين 0 و 1. b ثابت التمهيد المستخدم في حساب المتوسط ​​الميسر لعنصر الاتجاه للتنبؤ. القيم الصالحة للنطاق بيتا من 0 إلى 1. ما إذا كان المؤشر الموسمي يتم تطبيقه على التوقعات a و b مستقلان عن بعضهما البعض. ليس لديهم لإضافة إلى 1.0. الحد الأدنى المطلوب من تاريخ المبيعات: عامين بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). وتستخدم الطريقة 12 معادلتين أسيتين للتمهيد ومتوسط ​​بسيط واحد لحساب المتوسط ​​السلس واتجاه سلس ومتوسط ​​بسيط للموسم الموسمي. A.14.1 حساب التنبؤ A) متوسط ​​ممسود أضعافا مطردا (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 تقييم التنبؤات يمكنك اختيار أساليب التنبؤ لتوليد ما يصل إلى اثني عشر تنبؤا لكل منتج. ومن المحتمل أن تؤدي كل طريقة للتنبؤ إلى إسقاط مختلف قليلا. عندما يتم توقع الآلاف من المنتجات، فمن غير العملي لاتخاذ قرار شخصي بشأن أي من التوقعات لاستخدامها في خططك لكل من المنتجات. يقوم النظام تلقائيا بتقييم الأداء لكل من طرق التنبؤ التي تحددها، ولكل من توقعات المنتجات. يمكنك الاختيار بين معيارين للأداء، يعني الانحراف المطلق (ماد) ونسبة الدقة (بوا). ماد هو مقياس لخطأ التنبؤ. بوا هو مقياس للتحيز المتوقع. يتطلب كل من تقنيات تقييم الأداء هذه بيانات تاريخ المبيعات الفعلية لمستخدم محدد الفترة الزمنية. وتسمى هذه الفترة من التاريخ الحديث فترة الانتظار أو الفترات الأنسب (بف). ولقياس أداء طريقة التنبؤ، استخدم الصيغ المتوقعة لمحاكاة توقعات لفترة الاستحقاق التاريخية. وستكون هناك عادة اختلافات بين بيانات المبيعات الفعلية والتوقعات المحاكية لفترة الاستبعاد. عند اختيار طرق التنبؤ متعددة، تحدث هذه العملية نفسها لكل طريقة. يتم احتساب توقعات متعددة لفترة الاستحواذ، وبالمقارنة مع تاريخ المبيعات المعروفة لنفس الفترة من الزمن. ويوصى باستخدام طريقة التنبؤ التي تنتج أفضل مطابقة (أفضل ملاءمة) بين التوقعات والمبيعات الفعلية خلال فترة الاستبعاد لاستخدامها في خططك. هذه التوصية خاصة بكل منتج، وقد تتغير من جيل واحد إلى آخر. ألف - 16 الانحراف المطلق (ماد) هو المتوسط ​​(أو المتوسط) للقيم المطلقة (أو الحجم) للانحرافات (أو الأخطاء) بين البيانات الفعلية والمتوقعة. ماد هو مقياس لمتوسط ​​حجم الأخطاء المتوقع، نظرا لطريقة التنبؤ وتاريخ البيانات. ولأن القيم المطلقة تستخدم في الحساب، فإن الأخطاء الإيجابية لا تلغي الأخطاء السلبية. عند مقارنة عدة طرق التنبؤ، واحدة مع أصغر درهم أظهرت أن تكون الأكثر موثوقية لهذا المنتج لفترة تلك الانتظار. وعندما تكون التنبؤات غير متحيزة وتوزع الأخطاء عادة، توجد علاقة رياضية بسيطة بين تدبيرين عاديين ومقياسين آخرين للتوزيع والانحراف المعياري ومتوسط ​​الخطأ المربعة: A.16.1 نسبة الدقة (بوا) نسبة الدقة (بوا) هي وهو مقياس للتحيز المتوقع. وعندما تكون التوقعات مرتفعة جدا، تتراكم المخزونات وتزداد تكاليف الحصر. وعندما تكون التنبؤات منخفضة باستمرار، تستهلك المخزونات وتنخفض خدمة العملاء. توقعات أن 10 وحدات منخفضة جدا، ثم 8 وحدات مرتفعة جدا، ثم 2 وحدة عالية جدا، سيكون توقعات غير متحيزة. يتم إلغاء الخطأ الإيجابي من 10 من قبل أخطاء سلبية من 8 و 2. خطأ الفعلي - توقعات عندما يمكن تخزين المنتج في المخزون، وعندما توقعات غير منحازة، يمكن استخدام كمية صغيرة من مخزون السلامة لتخفيف الأخطاء. في هذه الحالة، ليس من المهم جدا للقضاء على أخطاء التنبؤ كما هو لتوليد توقعات غير منحازة. ولكن في الصناعات الخدمية، فإن الحالة المذكورة أعلاه سوف ينظر إليها على أنها ثلاثة أخطاء. وستعاني هذه الخدمة من نقص في عدد الموظفين في الفترة الأولى، ثم ستزداد أعداد الموظفين في الفترتين التاليتين. وفي الخدمات، يكون حجم أخطاء التنبؤ عادة أكثر أهمية مما هو متوقع. ويتيح الجمع خلال فترة الاستبعاد أخطاء إيجابية لإلغاء الأخطاء السلبية. عندما يتجاوز إجمالي المبيعات الفعلية مجموع المبيعات المتوقعة، ونسبة أكبر من 100. وبطبيعة الحال، فإنه من المستحيل أن يكون أكثر من 100 دقيقة. عندما تكون التوقعات غير منحازة، فإن نسبة بوا ستكون 100. ولذلك، فمن المستحسن أن يكون 95 دقيقة من أن تكون دقيقة 110. تحدد معايير بوا طريقة التنبؤ التي تحتوي على نسبة بوا الأقرب إلى 100. يؤدي البرنامج النصي في هذه الصفحة إلى تحسين تنقل المحتوى، ولكنه لا يغير المحتوى بأي شكل من الأشكال. متوسط ​​التحريك ونماذج التماسك الأسي كخطوة أولى في التحرك خارج النماذج المتوسطة، نماذج المشي العشوائي، ونماذج الاتجاه الخطي، وأنماط غير مواضيعية والاتجاهات يمكن استقراء باستخدام نموذج متحرك متوسط ​​أو تمهيد. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متباين ببطء. وبالتالي، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ​​ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط ​​المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط ​​المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ​​و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط ​​هو. المتوسط ​​المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط ​​البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط ​​في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط ​​المحلي سوف تميل إلى التخلف عن صحيح قيمة المتوسط ​​المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط ​​القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط ​​المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط ​​متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط ​​متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط ​​المحلي). إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط ​​عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا: متوسط ​​العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط ​​3 المدى: نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط ​​المتحرك المرجح أضعافا) نموذج المتوسط ​​المتحرك البسيط المذكورة أعلاه لديه الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط ​​المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط ​​المتوسط ​​المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط ​​عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط ​​المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط ​​عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول القيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط ​​الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط ​​عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط ​​المتوسط ​​المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط ​​الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج التمهيد الأسي الخطي (ليس) الذي يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. وعادة ما يعبر عن الشكل المعياري للنموذج من هذا النموذج على النحو التالي: اسمحوا S تدل على سلسة سلسة السلسلة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y. وهذا هو، يتم إعطاء قيمة S في الفترة t من قبل: (أذكر أنه تحت بسيطة الأسفل، وهذا سيكون التنبؤ ل Y في الفترة t1.) ثم اسمحوا سكوت تدل على سلسلة مضاعفة مضاعفة التي تم الحصول عليها من خلال تطبيق التمهيد الأسي بسيطة (باستخدام نفس 945) لسلسلة S: وأخيرا، والتوقعات ل تك تك. عن أي kgt1، تعطى بواسطة: هذه الغلة e 1 0 (أي الغش قليلا، والسماح للتوقعات الأولى تساوي الملاحظة الأولى الفعلية)، و e 2 Y 2 8211 Y 1. وبعد ذلك يتم توليد التنبؤات باستخدام المعادلة أعلاه. وهذا يعطي نفس القيم المجهزة كالصيغة المستندة إلى S و S إذا كانت الأخيرة قد بدأت باستخدام S 1 S 1 Y 1. يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمية. هولت 8217s الخطي الأسي تمهيد البني 8217s نموذج ليس يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أنه يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب: المستوى والاتجاه لا يسمح لها أن تختلف بمعدلات مستقلة. ويعالج نموذج هولت 8217s ليس هذه المسألة عن طريق تضمين اثنين من الثوابت تمهيد، واحدة للمستوى واحد للاتجاه. في أي وقت t، كما هو الحال في نموذج Brown8217s، هناك تقدير ل t من المستوى المحلي وتقدير t ر للاتجاه المحلي. وهنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة للمستوى والاتجاه من خلال معادلتين تنطبقان على تمهيد أسي لها بشكل منفصل. وإذا كان المستوى المقدر والاتجاه في الوقت t-1 هما L t82091 و T t-1. على التوالي، فإن التنبؤ ب Y تشي الذي كان سيجري في الوقت t-1 يساوي L t-1 T t-1. وعند ملاحظة القيمة الفعلية، يحسب التقدير المحدث للمستوى بصورة متكررة بالاستكمال الداخلي بين Y تشي وتوقعاته L t-1 T t-1 باستعمال أوزان 945 و1-945. والتغير في المستوى المقدر، وهي L t 8209 L t82091. يمكن تفسيرها على أنها قياس صاخبة للاتجاه في الوقت t. ثم يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t 8209 L t82091 والتقدير السابق للاتجاه T t-1. وذلك باستخدام أوزان 946 و 1-946: تفسير ثابت ثابت تمهيد 946 مماثل لتلك التي من ثابت مستوى تمهيد 945. نماذج ذات قيم صغيرة من 946 نفترض أن الاتجاه يتغير ببطء شديد مع مرور الوقت، في حين أن النماذج مع أكبر 946 تفترض أنها تتغير بسرعة أكبر. ويعتقد نموذج مع كبير 946 أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة المقبلة. (العودة إلى أعلى الصفحة). ويمكن تقدير ثوابت التنعيم 945 و 946 بالطريقة المعتادة من خلال تقليل الخطأ المتوسط ​​التربيعي للتنبؤات ذات الخطوة الأولى. عندما يتم ذلك في ستاترافيكس، وتظهر التقديرات إلى أن 945 0.3048 و 946 0.008. القيمة الصغيرة جدا 946 تعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل. وبالمقارنة مع فكرة متوسط ​​عمر البيانات المستخدمة في تقدير المستوى المحلي للسلسلة، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1 946، وإن لم يكن يساويها بالضبط . في هذه الحالة تبين أن تكون 10.006 125. هذا هو 8217t عدد دقيق جدا بقدر دقة تقدير 946 isn8217t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حيث حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير هذا الاتجاه. ويبين مخطط التنبؤ الوارد أدناه أن نموذج ليس يقدر اتجاه محلي أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج سيترند. كما أن القيمة المقدرة ل 945 تكاد تكون مطابقة لتلك التي تم الحصول عليها من خلال تركيب نموذج سيس مع أو بدون اتجاه، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت 8220eyeball8221 هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحولت إلى أسفل في نهاية السلسلة ما حدث المعلمات من هذا النموذج قد تم تقديرها من خلال تقليل الخطأ المربعة للتنبؤات 1-خطوة إلى الأمام، وليس التنبؤات على المدى الطويل، في هذه الحالة لا يوجد 8217t الاتجاه الكثير من الفرق. إذا كان كل ما كنت تبحث في 1-خطوة قبل الأخطاء، كنت لا ترى الصورة الأكبر للاتجاهات أكثر (مثلا) 10 أو 20 فترات. من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط الأساس أقصر لتقدير الاتجاه. على سبيل المثال، إذا اخترنا تعيين 946 0.1، ثم متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، وهو ما يعني أننا متوسط ​​متوسط ​​الاتجاه على مدى تلك الفترات 20 الماضية أو نحو ذلك. Here8217s ما مؤامرة توقعات يبدو وكأننا وضعنا 946 0.1 مع الحفاظ على 945 0.3. هذا يبدو معقولا بشكل حدسي لهذه السلسلة، على الرغم من أنه من المحتمل أن يستقضي هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إحصائيات الخطأ هنا هو مقارنة نموذج للنموذجين المبينين أعلاه وكذلك ثلاثة نماذج سيس. القيمة المثلى 945. لنموذج سيس هو تقريبا 0.3، ولكن يتم الحصول على نتائج مماثلة (مع استجابة أكثر قليلا أو أقل، على التوالي) مع 0.5 و 0.2. (A) هولتس الخطي إكس. تمهيد مع ألفا 0.3048 وبيتا 0.008 (B) هولتس الخطية إكس. تمهيد مع ألفا 0.3 و بيتا 0.1 (C) تمهيد الأسي بسيط مع ألفا 0.5 (D) تمهيد الأسي بسيطة مع ألفا 0.3 (E) بسيطة الأسي تمهيد مع ألفا 0.2 احصائياتهم متطابقة تقريبا، لذلك نحن حقا يمكن 8217t جعل الاختيار على أساس من 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات. وعلينا أن نعود إلى الاعتبارات الأخرى. إذا كنا نعتقد اعتقادا قويا أنه من المنطقي أن يستند تقدير الاتجاه الحالي على ما حدث على مدى السنوات ال 20 الماضية أو نحو ذلك، يمكننا أن نجعل من حالة لنموذج ليس مع 945 0.3 و 946 0.1. إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، فإن أحد نماذج سيس قد يكون من الأسهل تفسيره، كما سيوفر المزيد من توقعات منتصف الطريق للفترات الخمس أو العشر القادمة. (العودة إلى أعلى الصفحة). أي نوع من الاستقراء هو الأفضل: أدلة أفقية أو خطية تشير إلى أنه إذا تم تعديل البيانات (إذا لزم الأمر) للتضخم، فقد يكون من غير الحكمة استقراء الخطي القصير الأجل الاتجاهات بعيدة جدا في المستقبل. إن الاتجاهات الواضحة اليوم قد تتراجع في المستقبل بسبب أسباب متنوعة مثل تقادم المنتج، وزيادة المنافسة، والانكماش الدوري أو التحولات في صناعة ما. لهذا السبب، تجانس الأسي بسيط غالبا ما يؤدي أفضل من خارج العينة مما قد يكون من المتوقع خلاف ذلك، على الرغم من كوتنيفيكوت الاتجاه الأفقي الاستقراء. وكثيرا ما تستخدم أيضا تعديلات الاتجاه المخفف لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات الاتجاه. ويمكن تطبيق نموذج ليس المائل للاتجاه ليس كحالة خاصة لنموذج أريما، ولا سيما نموذج أريما (1،1،2). ومن الممكن حساب فترات الثقة حول التنبؤات طويلة الأجل التي تنتجها نماذج التمهيد الأسي، من خلال اعتبارها حالات خاصة لنماذج أريما. (حذار: لا تحسب جميع البرامج فترات الثقة لهذه النماذج بشكل صحيح). يعتمد عرض فترات الثقة على (1) خطأ رمز في النموذج، (2) نوع التجانس (بسيط أو خطي) (3) القيمة (ق) من ثابت ثابت (ق) و (4) عدد الفترات المقبلة كنت التنبؤ. بشكل عام، انتشرت الفترات بشكل أسرع مع 945 يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما يتم استخدام خطية بدلا من تجانس بسيط. ويناقش هذا الموضوع بمزيد من التفصيل في قسم نماذج أريما من الملاحظات. (العودة إلى أعلى الصفحة). في الممارسة العملية سوف يوفر المتوسط ​​المتحرك تقديرا جيدا لمتوسط ​​التسلسل الزمني إذا كان المتوسط ​​ثابتا أو ببطء في التغير. وفي حالة المتوسط ​​الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط ​​الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط ​​الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ​​ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط ​​الضوضاء العشوائية من التوزيع العادي مع متوسط ​​الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط ​​السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط ​​المتوسط ​​المتحرك للمتوسط ​​في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط ​​المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط ​​المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط ​​المتحرك يقلل من الملاحظات نظرا لأن المتوسط ​​يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط ​​قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط ​​المتحرك. التحيز عندما يكون المتوسط ​​يزداد سلبيا. أما بالنسبة للمتوسط ​​المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط ​​تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط ​​المتوسط ​​المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتدل المعادلات أدناه على الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط ​​التقدير المتحرك إلى افتراض متوسط ​​ثابت، والمثال له اتجاه خطي في المتوسط ​​خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط ​​المتحرك البالغ 5 من المتوسط ​​المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط ​​المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ​​ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط ​​المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط ​​المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط ​​المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط ​​المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط ​​الانحراف (ماد) في الخلايين E6 و E7 على التوالي.

No comments:

Post a Comment